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SUMMARY 
3 1  65@ 

The computational formulas used in the Brouwer theory of 
an artificial satellite a r e  modified by a method similar to that 
suggested by R. H. Lyddane to remove the singularities a t  c i r -  
cular and equatorial orbits. The Brouwer equations are also 
modified to reflect the use of the Vinti fo rm for the force func- 

iii 



CONTENTS 

SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  iii  

INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 

METHOD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 

FORCE FUNCTION AND BASIC CONSTANTS . . . . . . . . . . . . . . . . . . .  2 

SECULAR TERMS ...................................... 4 

LONG-PERIOD TERMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 

SHORT-PERIOD TERMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7 

OSCULATING ELEMENTS ................................ 8 

CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9 

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10 

V 



MODIFICATION OF BROUWER'S SOLUTION 

FOR ARTIFICIAL SATELLITES TO INCLUDE 

SMALL ECCENTRICITIES AND INCLINATIONS 

INTRODUCTION 

A s  Brouwer (Reference 1) states, the singularities in his formulas for  
small eccentricities and small inclinations are apparent since singularities do 
not exist in the coordinates. However, for  numeric evaluation these singulari- 
t ies  a r e  quite real  and cause erroneous resul ts  when the eccentricity or  inclin- 
ation i s  very small. Brouwer suggests that in these singular cases  the formulas 
be modified to obtain expressions for the perturbations in coordinates. Although 
this approach i s  feasible the modifications would be quite extensive and give 
rise to  different algorithms fo r  different orbits. Lyddane (Reference 2) has  
suggested a modification which i s  not too far removed from Brouwer's equations 
and yields a single algorithm for  all orbits. 

Although the primary purpose of the present modification i s  to remove 
singularities at small  eccentricities and inclinations, Brouwer's formulas a r e  
a lso modified to meet the following requirements: (1) To show factors of e" and 
s i n  i "  explicitly ra ther  than implicitly so  that l imits become obvious as either 
of these values approach zero,  (2) To change the form of the force function to 
the form used by Vinti as Brouwer recommends and (3)  To adapt the formulas 
so that they are better suited for  machine calculations. In view of t h i s  last  
requirement i t  i s  noted that many evaluations of quadratic polynomials are 
required in computing the perturbations. Hence, a single function for generating 
quadratic evaluations (such as a macro instruction) will simplify the coding of 
the procedure. Fo r  this reason all quadratic evaluations a r e  shown separately. 

The development of the modified formulas is one of straightforward algebraic 
manipulation but tedious requiring extreme caution to avoid e r ro r s .  The formulas 
contained herein have been verified several t imes algebraicly by independent 
checks and verified numerically by programming the procedure and comparing 
the numeric resul ts  with existing computer programs using the formulas of 
Brouwer. To avoid the possibility of typographical e r r o r s  the procedure was 
programmed for a computer using the formulas in the review copy and the 
resul ts  of this program were compared with previous results. 

METHOD 

The basic modification to Brouwer's formulas is merely to replace the 
classical  Keplerian elements a, e ,  i ,  h ,  g, 1 by simple functions of these elements 
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which a re  nonsingular at zero eccentricity or inclination. Many such functions 
exist, however, we have chosen the following which vary slightly f rom those used 
by Lyddane: a ,  A e cos 1 ,  p2 - e s i n  1 ,  v 1  = s i n  i cos h, and 
v 2  - s i n  i s i n  h .  The osculating values of these functions may be obtained by 
Taylor ser ies  expansions about the mean values and ignoring second and higher 
order  terms. Thus, 

- 
1 t g t h ,  p l  

- 

A = A" t 6 1  + Sg t Sh 

p l  
= ( e "  t Se) cos 1 ' I  - ( e "  5 1 )  s i n  1 "  

p 2  ( e "  t Se)  s i n  1 "  + ( e "  8 1 )  cos 1 "  

= s i n h "  ( s i n  1'' t 6 i  COS i " )  t ( s i n  i "  Sh) C O S  h" 
" 2  

where the operator 6 represents the sum of Brouwer's long and short period 
terms.  A s  Lyddane points out, the higher t e rms  of the Taylor se r ies  are singu- 
lar and ignoring them is mathematically unjustifiable. However, the Taylor 
s e r i e s  approach yields the same resul ts  as those obtained by Lyddane. Brouwer 
uses 1 ' and g' in the computation of the short  period t e rms  indicating that the 
I ' I  and g" might be used. In the present case  1 
and g' may be ill-defined. 

and g" must be used since 1 ' 

FORCE FUNCTION AND BASIC CONSTANTS 

Using the form 
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. 
4 .. 

as the adopted force function and the basic constants 

a. a" = semi-major axis constant, 

eo = e" = eccentricity constant, 

io = i "  = inclination constant, 

h, 

go = argument of perigee constant, 

1 1 mean anomaly constant, 

right ascension of ascending node constant, 

- A, - h, t go t 1 ,  = mean longitude constant, 

R = equatorial radius, 

and comparision with Brouwer's form for the force function gives 

1 = - J 3 R 3 ,  k, - - 3 J 2 R 2 ,  '3.0 

'5.0 = - J 5 R 5 .  

The Brouwer abbreviations become 

B = c o s i o  , 
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where 

2 

y2 = 2 . J 2  (:) ' 

4 
y 4  - - - i J 4 ( a " O )  ' 

2 

Y; = J 2  (f) 
4 

yq/ = -: J 4 ( F )  

3 
y 3  - - - J 3  (E) 7 

y5 - - - J 5 ( ; ; 0 )  R 5  ' 

3 

~ 3 /  = - J 3  (:) 

Y; = - J 5  (f) I 

5 

I 

The y i  and y i  do not appear in the present development these being replaced by 
the ji and the abbreviation y = - 1/2 (R/p). 

SECULAR TERMS 

p11 2 5 ~ ~  + 16-q - 15 , p L 2  = - 90-q2 - 9 6 ~  i- 30 , 

= 3 e 2  - 1 ,  p13  = 257 '  i- 1 4 4 ~  i- 105 , 411 

- = 3 4  (35 e 4  - 30 e 2  t 3 ) ,  g l 2  - ~ 1 3 8 ~  + ~ 1 2 0 ~  + ~ 1 1  * q13  

= - 1 2 6 ~ ~  - 192-q -t 90 , 
PI3 1 = 2 5 7 '  i- 24-q - 35 , Pe2 

4 

. 
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I 

4 

pg3 4 5 q 2  -t 3 6 0 ~  -t 385 , q = 5 e 2 - i 1  

- 
q g 2  - P g 4  = - 9 7 p  -t 21 , 

P, 5 = 1 2 6 ~ ~  - 270 , '96 = - 189'1' + 385 , 

LONG-PERIOD TERMS 

q,  = 1 - 150'  q2 = 1 - 7 e 2  
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2104 - 1402 t 1 q4 = 1 - 9 0 2  

7504  - 300'  + 11 q6 35e4  - i 4 e 2  t 3 

135e4 - 500' + 11 q8 = 4 5 0 4  - 180' + 5 

7 )  2 q t l  p 4  = - 9q2 - 6 7  + 7 

1 - b,  = - 4 y e o s i n  i o  J 2  q , +  5 qz 

- J 3  5 J 5  

-- 35 J 5  2 2 

b2 = J 2  q - 4 ?''Pi q3 

b3 = 24 j2  ~~e~ q4 s i n  io  

5 J 5  
q t - -  J 3  

J 2  4 J 2  ?''P2 q3 
- b, = - 

b5 - 4 [Jz 9 5 '  J 4  q6 1 1 
4 y eo s i n  i o  - 

- 

q6 sin2 9 
J 3  5 J 5  [ - q + TJ, Y2P,  q 3 - 6  - 
J 2  

b, - - 

q, s i n  2 io  
35 J 5  -- 

b, = 72 J 2  y2 '0' q 

1 2P3 q ,  2258' t 75 O 4  - 8 0 0 3  - 200'  + 230 + 1 
e o s i n i o { J  2 7 -  [ 9 (0  + 1) 
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y T 3  s i n  i o  

9 
- eo  6 ,  1 - (b ,  s i n  2g" + b, cos g" - b3 cos 3g") 

Y eo 0 
s i n i o  6 , h  = - - (b,  s i n  2g" t b, cos g" t b, cos 3g" ) q 

Y eo s i n  io  
6 , h  = q (bs s i n  2g" + bg cos g" t b,, COS 3g") 

SHORT-PERIOD TERMS 

s i n  E" 
E" - eo  s i n E "  = 1 "  , f "  = tan- '  

- 
E - 1 + eo  cos f "  

1 eo p3 
6 2  e = J 2 Y Z  {qzl [v t 3cos f f f  t 3eo cos2 f "  t e: cos3 f "  

t s i n 2  i o  [3 ( e o  t 3 cos f ' I  t 3eo cos' f If t e t  C O S 3  f " )  cos (2g" t 2f ' I )  

- q 2   COS (2g" t f " )  t COS (2g" t 3f"))]} 
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6 , i  = J 2 y 2 B s i n i o { 3 c o s ( 2 g " t 2 f " ) t e 0  [ 3 c o s ( 2 g " + f " ) t c o s ( 2 g J '  t3f")]}  

( € 2  t € t 7 2 )  

6 2  

3 
t ( 1 5 0 2 - 6 8 - 3 )  s i n f " +  2 e o s i n 2 i 0  1 

s i n ( 2 g "  + 3f")  2 1 
+ 2 eo s i n  i o  

3 5 8 + 3 )  
-+ -2 'm s i n 2  io  s i n  (2g" + 2 f " )  

OSCULATING ELEMENTS 

The formula for the semi-major axis, a ,  i s  given above. The remaining 

osculating elements a r e  obtained by the following: 

6e = 8 ,  e -+ s 2 e  , s i n  io  6h s i n  i o  6 ,  h + s i n  io  6 , h  , 

6 i  = 6 , i  + 6 , i  , e o 6 1  = eo 6 ,  1 + 1 ,  

8 
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6 A  = 6 , h  + 6 , A  , 

- 
p1  - (eo + 6e)  cos L "  - eo 8 1  s i n  1"  , 

= cos h" ( s i n  io  t 6 i  cos io )  - s i n  io 6h s i n  h" , 
" 1  

v2 = s i n  h"  ( s i n  io  + 6 i  cos io )  t s i n  io 6hcos h" , 

h = tan-'(:) , 

g = A " t 6 A - h - 1 .  

The coordinates and velocity components are then computed from the 
osculating elements in the usual manner. 

CONCLUSION 

The formulas contained herein are  valid for  all eccentricities and inclina- 
tion (except inclinations near the critial inclination and i = 7 ~ )  yielding the same 
resul ts  (to the order  of J2) a s  Brouwer's formulas when neither the eccentricity 
nor the inclination a r e  small. When the eccentricity is small  1 and g may be 
ill-defined, and when the inclination is small h ,  1,  and g may be ill-defined. 
These cases  cause no numeric problems, however, since A = g + L + h i s  always 
well defined. 
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